Saturday, November 1, 2025

The AI-Powered DevOps Pipeline: Automating Code Reviews with Python and Node.js

 Excellent concept! AI-powered DevOps pipelines are revolutionizing how teams ship code. Let me show you how to build a comprehensive automated code review system using Python for AI analysis and Node.js for pipeline integration.

System Architecture Overview

text
[GitHub/GitLab] --> [Node.js Webhook Handler] --> [Python AI Analyzer]
       ^                                              |
       |                                              v
[Status Updates] <-- [Node.js Orchestrator] <-- [Review Results & Suggestions]

Core Components

1. Node.js Webhook Server & Orchestrator

javascript
// server.js - Main webhook handler
const express = require('express');
const axios = require('axios');
const crypto = require('crypto');
const { spawn } = require('child_process');

const app = express();
app.use(express.json());

// Configuration
const CONFIG = {
    GITHUB_WEBHOOK_SECRET: process.env.GITHUB_WEBHOOK_SECRET,
    PYTHON_AI_SERVICE: process.env.PYTHON_AI_SERVICE || 'http://localhost:5000',
    SUPPORTED_LANGUAGES: ['javascript', 'python', 'typescript', 'java', 'go']
};

// GitHub webhook verification
function verifyGitHubSignature(req, res, next) {
    const signature = req.headers['x-hub-signature-256'];
    if (!signature) {
        return res.status(401).json({ error: 'Missing signature' });
    }

    const hmac = crypto.createHmac('sha256', CONFIG.GITHUB_WEBHOOK_SECRET);
    const digest = `sha256=${hmac.update(JSON.stringify(req.body)).digest('hex')}`;
    
    if (!crypto.timingSafeEqual(Buffer.from(signature), Buffer.from(digest))) {
        return res.status(401).json({ error: 'Invalid signature' });
    }
    
    next();
}

// AI Code Review Orchestrator
class CodeReviewOrchestrator {
    constructor() {
        this.reviewCache = new Map();
    }

    async performCodeReview(pullRequest) {
        const {
            repository,
            pull_request: pr
        } = pullRequest;

        const cacheKey = `${repository.full_name}#${pr.number}`;
        
        // Check cache for recent review
        if (this.reviewCache.has(cacheKey)) {
            return this.reviewCache.get(cacheKey);
        }

        try {
            // 1. Get PR details and changes
            const prDetails = await this.getPRDetails(repository, pr.number);
            const files = await this.getChangedFiles(repository, pr.number);
            
            // 2. Filter relevant files
            const reviewableFiles = files.filter(file => 
                this.isReviewableFile(file.filename) && 
                file.status !== 'removed'
            );

            // 3. Get file contents
            const fileContents = await this.getFileContents(repository, reviewableFiles);
            
            // 4. Send to Python AI service for analysis
            const aiAnalysis = await this.analyzeWithAI({
                files: fileContents,
                pr_title: pr.title,
                pr_description: pr.body,
                repository: repository.full_name,
                base_branch: pr.base.ref,
                head_branch: pr.head.ref
            });

            // 5. Post review comments to GitHub
            await this.postReviewComments(repository, pr.number, aiAnalysis.comments);

            // 6. Update PR status
            await this.updatePRStatus(repository, pr.head.sha, aiAnalysis.summary);

            // Cache the result
            this.reviewCache.set(cacheKey, aiAnalysis);
            setTimeout(() => this.reviewCache.delete(cacheKey), 300000); // 5 min cache

            return aiAnalysis;

        } catch (error) {
            console.error('Code review failed:', error);
            throw error;
        }
    }

    async analyzeWithAI(reviewContext) {
        try {
            const response = await axios.post(`${CONFIG.PYTHON_AI_SERVICE}/analyze`, reviewContext, {
                timeout: 60000 // 60 second timeout for AI analysis
            });
            return response.data;
        } catch (error) {
            console.error('AI service error:', error.message);
            throw new Error(`AI analysis failed: ${error.message}`);
        }
    }

    async getPRDetails(repo, prNumber) {
        // Implementation for getting PR details from GitHub API
        const response = await axios.get(
            `https://api.github.com/repos/${repo.full_name}/pulls/${prNumber}`,
            { headers: { Authorization: `token ${process.env.GITHUB_TOKEN}` } }
        );
        return response.data;
    }

    async getChangedFiles(repo, prNumber) {
        const response = await axios.get(
            `https://api.github.com/repos/${repo.full_name}/pulls/${prNumber}/files`,
            { headers: { Authorization: `token ${process.env.GITHUB_TOKEN}` } }
        );
        return response.data;
    }

    async getFileContents(repo, files) {
        const contents = [];
        
        for (const file of files) {
            try {
                const response = await axios.get(
                    `https://api.github.com/repos/${repo.full_name}/contents/${file.filename}?ref=${file.contents_url.split('?ref=')[1]}`,
                    { headers: { Authorization: `token ${process.env.GITHUB_TOKEN}` } }
                );
                
                const content = Buffer.from(response.data.content, 'base64').toString();
                contents.push({
                    filename: file.filename,
                    content: content,
                    changes: file.patch, // The diff patch
                    status: file.status
                });
            } catch (error) {
                console.warn(`Could not fetch content for ${file.filename}:`, error.message);
            }
        }
        
        return contents;
    }

    async postReviewComments(repo, prNumber, comments) {
        for (const comment of comments) {
            await axios.post(
                `https://api.github.com/repos/${repo.full_name}/pulls/${prNumber}/comments`,
                {
                    body: this.formatComment(comment),
                    commit_id: comment.commit_id,
                    path: comment.file_path,
                    line: comment.line_number,
                    side: comment.side || 'RIGHT'
                },
                { headers: { Authorization: `token ${process.env.GITHUB_TOKEN}` } }
            );
            
            // Rate limiting
            await new Promise(resolve => setTimeout(resolve, 1000));
        }
    }

    async updatePRStatus(repo, sha, summary) {
        const state = summary.issues_found > 0 ? 'failure' : 'success';
        
        await axios.post(
            `https://api.github.com/repos/${repo.full_name}/statuses/${sha}`,
            {
                state: state,
                target_url: process.env.CI_BUILD_URL,
                description: summary.issues_found > 0 ? 
                    `Found ${summary.issues_found} issues needing attention` :
                    'AI review passed - no critical issues found',
                context: 'ai-code-review/bot'
            },
            { headers: { Authorization: `token ${process.env.GITHUB_TOKEN}` } }
        );
    }

    formatComment(comment) {
        return `
🤖 **AI Code Review**

**${comment.category.toUpperCase()}**: ${comment.title}

${comment.description}

**Suggestion**: ${comment.suggestion}

**Confidence**: ${(comment.confidence * 100).toFixed(0)}%

${comment.example ? `**Example**: \`\`\`${comment.language}\n${comment.example}\n\`\`\`` : ''}
        `.trim();
    }

    isReviewableFile(filename) {
        const extension = filename.split('.').pop();
        const supported = ['js', 'ts', 'py', 'java', 'go', 'cpp', 'c', 'rs', 'php'];
        return supported.includes(extension);
    }
}

// Initialize orchestrator
const orchestrator = new CodeReviewOrchestrator();

// Webhook endpoint
app.post('/webhook/github', verifyGitHubSignature, async (req, res) => {
    const event = req.headers['x-github-event'];
    const payload = req.body;

    // Only process pull request events
    if (event !== 'pull_request') {
        return res.status(200).json({ status: 'ignored', reason: 'Not a pull request event' });
    }

    // Only process opened, synchronize, or reopened PRs
    if (!['opened', 'synchronize', 'reopened'].includes(payload.action)) {
        return res.status(200).json({ status: 'ignored', reason: 'Action not relevant for review' });
    }

    try {
        // Process in background
        setImmediate(async () => {
            try {
                await orchestrator.performCodeReview(payload);
            } catch (error) {
                console.error('Background processing error:', error);
            }
        });

        res.status(202).json({ status: 'accepted', message: 'Code review started' });
    } catch (error) {
        console.error('Webhook processing error:', error);
        res.status(500).json({ error: 'Internal server error' });
    }
});

// Health check endpoint
app.get('/health', (req, res) => {
    res.json({ 
        status: 'healthy', 
        service: 'ai-code-review-orchestrator',
        timestamp: new Date().toISOString()
    });
});

const PORT = process.env.PORT || 3000;
app.listen(PORT, () => {
    console.log(`AI Code Review Orchestrator running on port ${PORT}`);
});

2. Python AI Analysis Engine

python
# ai_analyzer.py - Core AI analysis engine
from flask import Flask, request, jsonify
import openai
from anthropic import Anthropic
import os
import re
import ast
import tempfile
import subprocess
from pathlib import Path
from typing import List, Dict, Any
import logging
from dataclasses import dataclass

app = Flask(__name__)

# Configuration
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
ANTHROPIC_API_KEY = os.getenv('ANTHROPIC_API_KEY')
GITHUB_TOKEN = os.getenv('GITHUB_TOKEN')

# Initialize clients
openai_client = openai.OpenAI(api_key=OPENAI_API_KEY) if OPENAI_API_KEY else None
anthropic_client = Anthropic(api_key=ANTHROPIC_API_KEY) if ANTHROPIC_API_KEY else None

@dataclass
class CodeIssue:
    file_path: str
    line_number: int
    category: str
    title: str
    description: str
    suggestion: str
    confidence: float
    severity: str  # low, medium, high, critical
    example: str = ""

class CodeAnalyzer:
    def __init__(self):
        self.supported_patterns = {
            'security': self._analyze_security,
            'performance': self._analyze_performance,
            'maintainability': self._analyze_maintainability,
            'bug_risk': self._analyze_bug_risk,
            'best_practices': self._analyze_best_practices
        }
    
    def analyze_code(self, files: List[Dict], pr_context: Dict) -> Dict[str, Any]:
        """Main analysis entry point"""
        all_issues = []
        
        for file in files:
            file_issues = self._analyze_file(file, pr_context)
            all_issues.extend(file_issues)
        
        # Categorize and summarize
        summary = self._generate_summary(all_issues)
        
        return {
            'issues': all_issues,
            'summary': summary,
            'comments': self._format_for_github(all_issues)
        }
    
    def _analyze_file(self, file: Dict, pr_context: Dict) -> List[CodeIssue]:
        """Analyze a single file"""
        issues = []
        filename = file['filename']
        content = file['content']
        changes = file.get('changes', '')
        
        # Language-specific analysis
        file_extension = Path(filename).suffix.lower()
        
        # Pattern-based analysis
        for category, analyzer in self.supported_patterns.items():
            category_issues = analyzer(filename, content, changes, file_extension)
            issues.extend(category_issues)
        
        # AI-powered analysis
        ai_issues = self._ai_analysis(filename, content, changes, pr_context)
        issues.extend(ai_issues)
        
        return issues
    
    def _analyze_security(self, filename: str, content: str, changes: str, extension: str) -> List[CodeIssue]:
        """Security vulnerability analysis"""
        issues = []
        security_patterns = {
            'javascript': [
                (r'eval\s*\(', 'Use of eval() function', 'high'),
                (r'localStorage\.setItem\s*\([^)]*password', 'Storing passwords in localStorage', 'critical'),
                (r'innerHTML\s*=', 'Potential XSS vulnerability', 'high'),
                (r'https?://[^\s"\']*', 'Hardcoded URLs', 'medium'),
            ],
            'python': [
                (r'subprocess\.call|os\.system', 'Shell command injection risk', 'high'),
                (r'pickle\.loads', 'Unsafe deserialization', 'critical'),
                (r'exec\(|eval\(', 'Code execution vulnerability', 'high'),
                (r'password\s*=\s*["\']', 'Hardcoded credentials', 'critical'),
            ]
        }
        
        lang = 'javascript' if extension in ['.js', '.ts', '.jsx', '.tsx'] else 'python'
        patterns = security_patterns.get(lang, [])
        
        for pattern, description, severity in patterns:
            matches = re.finditer(pattern, content, re.IGNORECASE)
            for match in matches:
                line_number = content[:match.start()].count('\n') + 1
                issues.append(CodeIssue(
                    file_path=filename,
                    line_number=line_number,
                    category='security',
                    title=description,
                    description=f"Potential security vulnerability found",
                    suggestion=f"Consider using safer alternatives and validate inputs",
                    confidence=0.8,
                    severity=severity,
                    example=self._get_example_fix(pattern, lang)
                ))
        
        return issues
    
    def _analyze_performance(self, filename: str, content: str, changes: str, extension: str) -> List[CodeIssue]:
        """Performance issue analysis"""
        issues = []
        
        # Common performance patterns
        performance_patterns = [
            (r'for\s*\([^)]*\)\s*{[\s\S]*?\bfor\s*\([^)]*\)\s*{', 'Nested loops - O(n²) complexity', 'medium'),
            (r'JSON\.parse\s*\([^)]*\)\s*in\s+loop', 'JSON parsing in loop', 'medium'),
            (r'document\.querySelectorAll\s*\([^)]*\)\s*\.forEach', 'DOM query in loop', 'medium'),
        ]
        
        for pattern, description, severity in performance_patterns:
            if re.search(pattern, content, re.MULTILINE):
                issues.append(CodeIssue(
                    file_path=filename,
                    line_number=1,  # Would need more sophisticated line detection
                    category='performance',
                    title=description,
                    description="Performance optimization opportunity",
                    suggestion="Consider optimizing the algorithm or caching results",
                    confidence=0.7,
                    severity=severity
                ))
        
        return issues
    
    def _analyze_maintainability(self, filename: str, content: str, changes: str, extension: str) -> List[CodeIssue]:
        """Code maintainability analysis"""
        issues = []
        
        # Large function detection
        functions = self._extract_functions(content, extension)
        for func_name, func_info in functions.items():
            if func_info['line_count'] > 50:
                issues.append(CodeIssue(
                    file_path=filename,
                    line_number=func_info['start_line'],
                    category='maintainability',
                    title=f"Large function: {func_name} ({func_info['line_count']} lines)",
                    description="Functions should generally be under 50 lines for maintainability",
                    suggestion="Consider breaking this function into smaller, focused functions",
                    confidence=0.9,
                    severity='medium'
                ))
        
        # Complex conditional detection
        complex_conditionals = re.findall(r'if\s*\([^)]{100,}\)', content)
        for conditional in complex_conditionals:
            issues.append(CodeIssue(
                file_path=filename,
                line_number=1,
                category='maintainability',
                title="Complex conditional expression",
                description="Conditional logic is complex and hard to maintain",
                suggestion="Extract complex conditions into well-named variables or functions",
                confidence=0.8,
                severity='low'
            ))
        
        return issues
    
    def _analyze_bug_risk(self, filename: str, content: str, changes: str, extension: str) -> List[CodeIssue]:
        """Potential bug detection"""
        issues = []
        
        bug_patterns = {
            'javascript': [
                (r'==\s*(null|undefined)', 'Use === for null/undefined checks', 'medium'),
                (r'console\.log\(', 'Leftover debug statement', 'low'),
                (r'try\s*{[\s\S]*?}\s*catch\s*\([^)]*\)\s*{}', 'Empty catch block', 'high'),
            ],
            'python': [
                (r'except:\s*pass', 'Bare except with pass', 'high'),
                (r'print\(', 'Leftover debug statement', 'low'),
                (r'assert\s+[^,)]*$', 'Assert without message', 'medium'),
            ]
        }
        
        lang = 'javascript' if extension in ['.js', '.ts'] else 'python'
        patterns = bug_patterns.get(lang, [])
        
        for pattern, description, severity in patterns:
            matches = re.finditer(pattern, content, re.MULTILINE)
            for match in matches:
                line_number = content[:match.start()].count('\n') + 1
                issues.append(CodeIssue(
                    file_path=filename,
                    line_number=line_number,
                    category='bug_risk',
                    title=description,
                    description="Potential bug or code smell detected",
                    suggestion="Fix the issue to prevent potential bugs",
                    confidence=0.85,
                    severity=severity
                ))
        
        return issues
    
    def _analyze_best_practices(self, filename: str, content: str, changes: str, extension: str) -> List[CodeIssue]:
        """Coding best practices analysis"""
        issues = []
        
        best_practice_patterns = [
            (r'//\s*TODO:', 'TODO comment left in code', 'low'),
            (r'//\s*FIXME:', 'FIXME comment left in code', 'medium'),
            (r'function\s+[a-z][a-zA-Z]*', 'Function name should be camelCase', 'low'),
        ]
        
        for pattern, description, severity in best_practice_patterns:
            if re.search(pattern, content):
                issues.append(CodeIssue(
                    file_path=filename,
                    line_number=1,
                    category='best_practices',
                    title=description,
                    description="Code style or best practice issue",
                    suggestion="Follow team coding conventions and best practices",
                    confidence=0.9,
                    severity=severity
                ))
        
        return issues
    
    def _ai_analysis(self, filename: str, content: str, changes: str, pr_context: Dict) -> List[CodeIssue]:
        """Use AI models for advanced code analysis"""
        if not anthropic_client:
            return []
        
        try:
            prompt = self._build_analysis_prompt(filename, content, changes, pr_context)
            
            response = anthropic_client.messages.create(
                model="claude-3-sonnet-20240229",
                max_tokens=1000,
                temperature=0.1,
                system="You are an expert code reviewer. Analyze code for issues and provide specific, actionable feedback.",
                messages=[{"role": "user", "content": prompt}]
            )
            
            return self._parse_ai_response(response.content[0].text, filename)
            
        except Exception as e:
            logging.error(f"AI analysis failed: {e}")
            return []
    
    def _build_analysis_prompt(self, filename: str, content: str, changes: str, pr_context: Dict) -> str:
        """Build prompt for AI analysis"""
        return f"""
        Analyze this code file for the pull request:
        
        PR Title: {pr_context.get('pr_title', 'N/A')}
        PR Description: {pr_context.get('pr_description', 'N/A')}
        Repository: {pr_context.get('repository', 'N/A')}
        
        File: {filename}
        
        Code Content:
        ```
        {content}
        ```
        
        Changes in this PR:
        ```
        {changes}
        ```
        
        Please analyze for:
        1. Security vulnerabilities
        2. Performance issues
        3. Code smells and maintainability
        4. Potential bugs
        5. Best practices violations
        6. Architecture concerns
        
        Provide specific, actionable feedback with line numbers if possible.
        """
    
    def _parse_ai_response(self, response: str, filename: str) -> List[CodeIssue]:
        """Parse AI response into structured issues"""
        # This would parse the AI response into CodeIssue objects
        # Implementation depends on the AI model's response format
        issues = []
        
        # Simple pattern matching for demonstration
        lines = response.split('\n')
        current_issue = None
        
        for line in lines:
            if 'CRITICAL:' in line or 'HIGH:' in line or 'MEDIUM:' in line or 'LOW:' in line:
                if current_issue:
                    issues.append(current_issue)
                
                severity = 'medium'
                if 'CRITICAL' in line: severity = 'critical'
                elif 'HIGH' in line: severity = 'high'
                elif 'LOW' in line: severity = 'low'
                
                current_issue = CodeIssue(
                    file_path=filename,
                    line_number=1,
                    category='ai_analysis',
                    title=line.strip(),
                    description="",
                    suggestion="",
                    confidence=0.8,
                    severity=severity
                )
            elif current_issue and line.strip():
                if not current_issue.description:
                    current_issue.description = line.strip()
                else:
                    current_issue.suggestion = line.strip()
        
        if current_issue:
            issues.append(current_issue)
        
        return issues
    
    def _extract_functions(self, content: str, extension: str) -> Dict[str, Any]:
        """Extract function information from code"""
        functions = {}
        
        if extension in ['.py']:
            # Python function extraction
            try:
                tree = ast.parse(content)
                for node in ast.walk(tree):
                    if isinstance(node, (ast.FunctionDef, ast.AsyncFunctionDef)):
                        start_line = node.lineno
                        end_line = node.end_lineno or start_line
                        functions[node.name] = {
                            'start_line': start_line,
                            'line_count': end_line - start_line + 1
                        }
            except:
                pass
        
        return functions
    
    def _get_example_fix(self, pattern: str, language: str) -> str:
        """Provide example fixes for common issues"""
        fixes = {
            'eval': {
                'javascript': '// Instead of eval(expression)\n// Use: const result = safeEval(expression) or a parser',
                'python': '# Instead of eval(expression)\n# Use: ast.literal_eval(expression) or a safe parser'
            },
            'localStorage password': {
                'javascript': '// Instead of localStorage.setItem("password", pwd)\n// Use: secure authentication with backend'
            }
        }
        
        for key, examples in fixes.items():
            if key in pattern:
                return examples.get(language, '')
        
        return ''
    
    def _generate_summary(self, issues: List[CodeIssue]) -> Dict[str, Any]:
        """Generate summary of all issues found"""
        severity_counts = {'critical': 0, 'high': 0, 'medium': 0, 'low': 0}
        category_counts = {}
        
        for issue in issues:
            severity_counts[issue.severity] += 1
            category_counts[issue.category] = category_counts.get(issue.category, 0) + 1
        
        return {
            'total_issues': len(issues),
            'issues_by_severity': severity_counts,
            'issues_by_category': category_counts,
            'has_critical_issues': severity_counts['critical'] > 0,
            'has_high_issues': severity_counts['high'] > 0,
            'review_passed': severity_counts['critical'] == 0 and severity_counts['high'] == 0
        }
    
    def _format_for_github(self, issues: List[CodeIssue]) -> List[Dict]:
        """Format issues for GitHub API"""
        return [
            {
                'file_path': issue.file_path,
                'line_number': issue.line_number,
                'category': issue.category,
                'title': issue.title,
                'description': issue.description,
                'suggestion': issue.suggestion,
                'confidence': issue.confidence,
                'severity': issue.severity,
                'example': issue.example
            }
            for issue in issues
        ]

# Initialize analyzer
analyzer = CodeAnalyzer()

@app.route('/analyze', methods=['POST'])
def analyze_code():
    """Main analysis endpoint"""
    try:
        data = request.json
        files = data.get('files', [])
        pr_context = {
            'pr_title': data.get('pr_title', ''),
            'pr_description': data.get('pr_description', ''),
            'repository': data.get('repository', ''),
            'base_branch': data.get('base_branch', ''),
            'head_branch': data.get('head_branch', '')
        }
        
        result = analyzer.analyze_code(files, pr_context)
        
        return jsonify(result)
        
    except Exception as e:
        logging.error(f"Analysis error: {e}")
        return jsonify({
            'error': 'Analysis failed',
            'message': str(e)
        }), 500

@app.route('/health', methods=['GET'])
def health_check():
    return jsonify({
        'status': 'healthy',
        'service': 'ai-code-analyzer',
        'ai_available': bool(anthropic_client or openai_client)
    })

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5000, debug=False)

3. Package.json and Dependencies

json
{
  "name": "ai-code-review-devops",
  "version": "1.0.0",
  "description": "AI-powered automated code review system",
  "main": "server.js",
  "scripts": {
    "start": "node server.js",
    "dev": "nodemon server.js",
    "test": "jest",
    "lint": "eslint .",
    "build": "echo 'No build step required'"
  },
  "dependencies": {
    "express": "^4.18.2",
    "axios": "^1.6.0",
    "crypto": "^1.0.1",
    "dotenv": "^16.3.1",
    "winston": "^3.11.0",
    "express-rate-limit": "^7.1.5",
    "helmet": "^7.1.0",
    "cors": "^2.8.5"
  },
  "devDependencies": {
    "nodemon": "^3.0.2",
    "jest": "^29.7.0",
    "eslint": "^8.54.0",
    "supertest": "^6.3.3"
  },
  "engines": {
    "node": ">=18.0.0"
  }
}

4. Docker Configuration

dockerfile
# Node.js Dockerfile
FROM node:18-alpine

WORKDIR /app

COPY package*.json ./
RUN npm ci --only=production

COPY . .

USER node

EXPOSE 3000

CMD ["node", "server.js"]
dockerfile
# Python Dockerfile
FROM python:3.11-slim

WORKDIR /app

COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

COPY . .

USER nobody

EXPOSE 5000

CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:5000", "ai_analyzer:app"]
yaml
# docker-compose.yml
version: '3.8'
services:
  node-orchestrator:
    build: ./node-orchestrator
    ports:
      - "3000:3000"
    environment:
      - GITHUB_WEBHOOK_SECRET=${GITHUB_WEBHOOK_SECRET}
      - GITHUB_TOKEN=${GITHUB_TOKEN}
      - PYTHON_AI_SERVICE=http://python-analyzer:5000
      - NODE_ENV=production
    depends_on:
      - python-analyzer

  python-analyzer:
    build: ./python-analyzer
    environment:
      - OPENAI_API_KEY=${OPENAI_API_KEY}
      - ANTHROPIC_API_KEY=${ANTHROPIC_API_KEY}
      - GITHUB_TOKEN=${GITHUB_TOKEN}

  redis:
    image: redis:alpine
    ports:
      - "6379:6379"

  # Monitoring
  prometheus:
    image: prom/prometheus
    ports:
      - "9090:9090"

Key Features

  1. Multi-Layer Analysis:

    • Pattern-based security scanning

    • Performance optimization detection

    • Maintainability and complexity analysis

    • AI-powered contextual review

  2. Smart Integration:

    • GitHub webhook handling

    • PR status updates

    • Inline comment posting

    • Caching for performance

  3. Production Ready:

    • Error handling and retries

    • Rate limiting

    • Health checks

    • Comprehensive logging

Setup and Deployment

  1. Environment Variables:

bash
# GitHub Configuration
GITHUB_WEBHOOK_SECRET=your_webhook_secret
GITHUB_TOKEN=your_github_token

# AI Services
OPENAI_API_KEY=your_openai_key
ANTHROPIC_API_KEY=your_anthropic_key

# Deployment
NODE_ENV=production
PYTHON_AI_SERVICE=http://localhost:5000
  1. Webhook Configuration:

    • Set up GitHub webhook to point to your Node.js service

    • Configure for pull request events

    • Set content type to application/json

  2. Python Requirements:

txt
flask==2.3.3
openai==1.3.7
anthropic==0.7.4
gunicorn==21.2.0
python-dotenv==1.0.0

No comments:

Post a Comment